Enhanced bystander cytotoxicity of P450 gene-directed enzyme prodrug therapy by expression of the antiapoptotic factor p35.
نویسندگان
چکیده
Cytochrome P450 gene-directed enzyme prodrug therapy substantially augments intratumoral activation of anticancer prodrugs, such as cyclophosphamide (CPA), leading to a strong increase in antitumor effect without a corresponding increase in host toxicity. Attempts to additionally increase tumor cell kill by enhancing the intrinsic chemosensitivity of P450-expressing tumor cells by chemical means (depletion of cellular glutathione) or by coexpression of proapoptotic factors was shown to result in the desired increase in chemosensitivity, but with a decrease in net production of bystander cytotoxic drug metabolites because of accelerated death of the prodrug-activating tumor cells. Moreover, tumor cell P450 activity declined during the course of apoptosis induced by P450-activated CPA, limiting the potential of the tumor cell for continued production of activated drug metabolites. This limitation could be overcome by retroviral delivery of the baculovirus-encoded caspase inhibitor p35 to P450-expressing tumor cells. p35 substantially prolonged the activation of CPA by P450 "factory cells," leading to an increase in their bystander cytotoxicity toward P450-deficient tumor cells. This effect was greatest in tumor cells treated with CPA for an 8-h period, a schedule designed to model the effective time period of drug exposure in bolus CPA-treated patients in vivo. Notably, retroviral transduction of tumor cells with p35 did not induce drug resistance, as shown by the absence of long-term tumor cell survival or detectable colony formation activity after CPA treatment. These findings demonstrate that antiapoptotic factors, such as p35, can be used in a novel manner to enhance prodrug activation gene therapy by delaying tumor cell death, thereby increasing the net production of bystander cytotoxic metabolites and, hence, the overall effectiveness of the anticancer strategy.
منابع مشابه
Enhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydroxylase P450 2B11.
Gene therapy using the prodrug-activating enzyme P450 2B6 has shown substantial promise in preclinical and initial clinical studies with the P450 prodrugs cyclophosphamide and ifosfamide. We sought to optimize this therapy using the canine P450 enzyme 2B11, which activates cyclophosphamide and ifosfamide with Km of 80 to 160 micromol/L, approximately 10- to 20-fold lower than the Km of P450 2B6...
متن کاملActivation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer.
Cancer chemotherapeutic prodrugs, such as the oxazaphosphorines cyclophosphamide and ifosfamide, are metabolized by liver cytochrome P450 enzymes to yield therapeutically active, cytotoxic metabolites. The effective use of these prodrugs is limited by host toxicity associated with the systemic distribution of cytotoxic metabolites formed in the liver. This problem can, in part, be circumvented ...
متن کاملHarnessing apoptosis for improved anticancer gene therapy.
Advances in our understanding of the mechanisms by which tumor cells detect drug-induced DNA damage leading to apoptotic death have aided in the design of novel, potentially more selective strategies for cancer treatment. Several of these strategies use proapoptotic factors and have shown promise in sensitizing tumor cells to the cytotoxic actions of traditional cancer chemotherapeutic drugs. A...
متن کاملDiffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm.
Tumor cells become sensitive to the inert prodrug cyclophosphamide (CPA) after transfer of the gene encoding cytochrome P450 2B1. This enzyme activates CPA into 4-hydroxycyclophosphamide, which ultimately degrades into acrolein and phosphoramide mustard, the anticancer and DNA-alkylating metabolite. It is imperative that any prodrug-activating gene therapy strategy against cancer possess the ca...
متن کاملIdentification of novel enzyme-prodrug combinations for use in cytochrome P450-based gene therapy for cancer.
Gene-directed enzyme prodrug therapy can be used to increase the therapeutic activity of anti-cancer prodrugs that undergo liver cytochrome P450 (CYP)-catalyzed prodrug to active drug conversion. The present report describes a cell-culture-based assay to identify CYP gene-CYP prodrug combinations that generate bystander cytotoxic metabolites and that may potentially be useful for CYP-based gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 62 23 شماره
صفحات -
تاریخ انتشار 2002